Euler-boole Summation Revisited

ثبت نشده
چکیده

is a well-known formula from classical analysis giving a relation between the finite sum of values of a function f , whose first m derivatives are absolutely integrable on [a, n], and its integral, for a,m, n ∈ N, a < n. This elementary formula appears often in introductory texts [2, 17], usually in reference to a particular application—Stirling’s asymptotic formula. However, general approaches to such formulae are not often mentioned in the same context. In the formula above, the Bl are the Bernoulli numbers and the B̃l(x) are the periodic Bernoulli polynomials. The Bernoulli polynomials are most succinctly characterized by a generating function [1, 23.1.1]:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler-Boole Summation Revisited

We study a connection between Euler-MacLaurin Summation and Boole Summation suggested in an AMM note from 1960, which explains them as two cases of a general approach to approximation. Herein we give details and extensions of this idea.

متن کامل

Notes on Euler-boole Summation

We study a connection between Euler-MacLaurin Summation and Boole Summation suggested in an AMM note from 1960, which explains them as two cases in a general approach to approximation that also encompasses Taylor sums. Here we give additional details of the construction.

متن کامل

The Euler-Maclaurin Formula and Sums of Powers Revisited

Using the Euler-Maclaurin summation formula the strictly increasing convergence lim m → ∞ m j=1 j m m = e e − 1 is demonstrated.

متن کامل

A Note on Boole Polynomials

Boole polynomials play an important role in the area of number theory, algebra and umbral calculus. In this paper, we investigate some properties of Boole polynomials and consider Witt-type formulas for the Boole numbers and polynomials. Finally, we derive some new identities of those poly-nomials from the Witt-type formulas which are related to Euler polynomials.

متن کامل

From Boltzmann to Euler: Hilbert’s 6 Problem Revisited

This article addresses the hydrodynamic limit of the Boltzmann equation to the compressible Euler equations of gas dynamics. An exact summation of the Chapman–Enskog expansion originally given by A. Gorban and I. Karlin is the key to the analysis. An appraisal of the role of viscosity and capillarity in the limiting process is then given where the analogy is drawn to the limit of the Korteweg –...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007